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ABSTRACT 

First we show that every real Banach space satisfying a certain property, 
called ~ (used by Lindenstrauss and Partington) verifies the denseness of 
the numerical radius attaining operators. Using this result and a renorm- 
ing theorem b.y Partington we conclude that every Banach space is iso- 
morphic to a new one satisfying the denseness of the numerical radius 
attaining operators. 

We deal with a "Bishop-Phelps" type problem, raised by B. Sims in his doctoral 

dissertation [16]. To introduce this question, let us recall the following notions: 

Let X be a Banaeh space and T E L(X)  (where L(X)  will denote the space of 

all bounded and linear operators on X). The n u m e r i c a l  r a n g e  of T, V(T) ,  is 

the set of scalars given by 

where 

V(T)  = { f (T(x ) )  : (x, f )  E II(X)} 

~ ( x )  = {(~, S) ~ s x  × s x .  : S(~) = 1}. 

(Sx  and Sx .  are tile unit spheres of X and its dual, respectively.) 

The n u m e r i c a l  r ad iu s  of T, v(T), is defined by 

v(T) = Sup{lAl : A E V(T)}. 
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We say that T attains its numerical radius if there exists A E V(T) such 

that v(T) = I~1, that is, when the above supremum is actually a maximum We 

will denote by R(X) the set of all (bounded and linear) operators on X which 

attain their numerical radii. A complete survey on the concept and properties of 

numerical ranges can be found in the monographs by Bonsall-Duncan [5,6]. 

The kind of problem Sims raised can be posed in the following way: 

Is it true, for any Banach space X, that the numerical radius attaining opera- 

tors on X is a dense set in L(X)? 

In 1972 B. Sims gave the first answer [16] showing that, on a Hilbert space, 

the set of selfadjoint operators which attain their numerical radii is dense in the 

set of all self-adjoint operators. Then, in 1984 I. Berg and B. Sims [4] proved 

that uniform convexity on the Banach space is enough to get a positive answer. 

Using this result, two years later, C. Cardassi proved the denseness of the set 

R(X) when X is a uniformly smooth space [91 and solved the problem for the 

spaces co, t l  [8], C(K) [7] (real functions) and Ll(tt) (where # is a regular and 

positive Borel measure on a compact and Hausdorff topological space K) [10]. 

Then, in 1989, R. Pay£ and the author, proved, for any Banach space X, the 

denseness of the set of operators on X whose adjoints attain their numerical radii. 

As a consequence, if X is reflexive, they gave a positive answer to the problem 

by Sims [1,2]. The same authors also obtained a condition on the Banach space 

X to guarantee the denseness of R(X), more general than reflexivity, which is 

Radon-Nikodym property. 

In 1990, the author proved that every weakly compactly generated space is 

isomorphic to a Banach space Y for which R(Y) is dense in L(Y) and also 

obtained that every Banach space X is linearly isometric to a 1-complemented 

subspace of a Banach space Y with the same density character and such that 

the numerical radius attaining operators are dense [3]. Anyway, as the property 

of denseness of R(X) did not seem to be hereditary, the original problem still 

remained opened. In 1991, R. Pay~ [13] gave an example of a Banach space 

X for which R(X) is not dense in L(X), solving the question by Sims. Using 

this counterexample and the above embedding result, we can deduce that the 

denseness o'f R(X) in L(X) is highly nonstable under subspaces. 

Since there is a counterexample, we could think on the isomorphic version of 

this problem. In this paper, we prove that, every Banach space X is isomorphic 

to a Banach space Y which verifies R(Y) = L(Y). To get this result, we show, in 
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fact, that a certain geometrical condition, called property/3, implies denseness of 

numerical radius attaining operators. The isometric result is also interesting by 

itself and proves, once more, the paralelism between denseness of norm attaining 

operators and numerical radius attaining operators, even when these two sets are 

not necessarily the same. 

In the following every Banach space considered will be real. 

First we recall property #. 

Detlnition 1 [11]: A Banach space has p r o p e r t y  # if there exists a subset 

{(x~, f~) : a E A} of Sx  x Sx .  satisfying the following assertions 

(i) f~(x~) = 1. 

(ii) There exists A, 0 _< A < 1 and such that If~(x#)l < A for a #/3. 

(iii) For every x in X, [[x[[ = Sup{[f~(x)[ : a E A}. 

Note that this definition generalizes the geometric behaviour of the elements 

{(e,, e*): n E IN} in co and ~oo. Property fl was already used by J. Lindenstrauss 

[11] and W. Schachermayer [15] related with norm attaining operators. In fact, 

Lindenstrauss proved that if X has property fl, for every Banach space Y, the 

norm attaining operators from Y to X is a dense set in L(Y, X) (bounded and 

linear operators from Y to X) [11]. 

We will prove the analogous result of one by Lindenstrauss for numerical radius 

attaining operators. The proof of this fact follows the original paper by Linden- 

strauss, but the adaptation to numerical radius needs non trivial arguments to 

apply his technique. First of all, we will try to compute the numerical radius of 

an operator T E L(X), being X a Banach space with property ft. To get this 

kind of relation, we will prove that the unit sphere can be generated by the faces 

determined by the elements {fc,} which appear in the definition of property ft. 

Let us denote by T = {1,-1} and by B x  the closed unit ball of X. 

LEMMA 2: Let X be a Banach space with property fl, then the set U~eA TF,~ is 

a dense set  or  S x ,  where  = E B x :  = 1}. 

Proof'. Fix x E Sx  a n d e  > 0. We choose0 < 3' < ~ and consider the real 

function ~ : [0, 1] ~ R defined by 

= ( 1  - 3 , ) ( 1  + (0 < g < 1), 

where A is the real number which satisfies (ii) in the definition of property #. ~2 
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satisfies ~(0)  = 1 + 7 ( A -  1) < 1, so there  exists 0 < 6 < min  {1, 4} such tha t  for 

0 < t < 6 we have ~( t )  < 1. 

Now, by condit ion (iii) in p rope r ty  ~, we can choose a E A such tha t  IS (x)l > 

1 - 6, and  let w = sign f~(x) ;  taking to = 1 - f~ (wz )  we get ~(t0)  < 1. 

Define now y = wx + toxa, so Ilyll < x + to and S-(y) = 1 by the choice of 

to and  the fact tha t  I , ( z ~ )  = 1; taking z = (1 - 7)Y + 7 x , ,  one has,  of course, 

f~(z )  = 1 and  we want  to prove tha t  z E F~. To  get this, we jus t  need z to be  

an element  in B x .  

Using again  tha t  the set {/~} is norming  (condit ion (iii)), it is enough to 

compu te  I~(z). For fl # a ,  we have 

IS (z)I = I(x - 7)S (y) + 7f (x )l 

= I(1 - 7 ) [ w / ~ ( z )  + t 0 / ~ ( z , ) ]  + 7f~(z , , ) ]  (by Definition l( i i))  

< (1 - 7)(1 + t0A) + 7A = ~(t0)  < 1. 

As we had  f~(z )  = 1, then  z E F~,. Now, we check tha t  z is near  to wx; jus t  

using the  definition of z, y and the choice of 7 and to, we have 

II z - wzll = II( 1 - 7)Y + 7x~ - wxll = II( x - 7)Y + 7x~ - Y + t0z~ll 

< 711~ - yll + t011~,ll < 7(11~11 + Ilyll) + t01ix~ll 

Note tha t  we showed tha t  wz E TF~, and I l w z  - zll < and this concludes the 

proof.  I 

F rom the above result  it is easy to get an es t imate  for the numerical  radius  of 

opera tors  on Banach  spaces wi th  p rope r ty  ft. 

LEMMA 3: Let X be a Banach  space with property fl and T E L ( X ) ,  then 

v(T)  = Sup{]f , (T(z))]  : a e A ,x  E F~}. 

Proof: By the above l e m m a  the set U~eATF,  is a dense set in the unit  sphere 

of X ,  so we can apply  [5; Theorems  9.3 and  9.4], which gives 

v(T)  = Sup{[wfc,(T(wx))i  : w • T , a  • A ,x  • F,~}, 

but  the  above s u p r e m u m  is clearly the same as 

Sup{Ifc,(T(x))l : a e A ,x  E F¢,}. I 
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To prove the announced result we also need the Bishop-Phelps Theorem: 

THEOREM 4 ([14; Proposition 7]): Let X be a Banach space and C be a non- 

empty, dosed convex and bounded set of X ,  then the set 

{f 6 X* :  If[ attains its supremum on C} 

is dense in X*.  

We can now prove our main theorem. 

THEOREM 5: Let X be a Banach space with property ft. Given T 6 L ( X ) ,  

e > O, there exists an operator S 6 L ( X )  with [IS - T[[ < e, such that S - T is 

a rank-one operator and S 6 R (X) .  In particular, R ( X )  is a dense set in L (X) .  

Proof." We will assume [[T[[ < 1 and choose r I > 0 such that 

(1) ~7 < min {e  I - A  } ~ , ~ , 1 -  I ITII  . 

First we will perturb the initial operator T to get a new operator T1, such that 

the numerical radius of T1 can be estimated using just a fixed index a 6 A in the 

supremun appearing in Lemma 3. 

By Lemma 3, we can choose a 6 A and x 6 F~ such that 

(2) If~(T(x))] > v(T) - 712. 

Define 

T, (z) = T(z)  + ~?wf~(z)x~, (z 6 X ) ,  

where w = sign fo, Tx.  

Clearly T1 6 L(X) ,  lIT1 - T[[ _< ~/. We claim that 

v(T1) = Sup{If~,(T(z))[ : z 6 F,~} 

where a is the index satisfying (2). If we choose ¢/6 A, ~ # a and z 6 F~, we 

will have 

(3) [b(T~(z))[ = [fz(T(z)) + ~wf~(z)f~(x,~)[ <_ v(T) + rlA , 

where we used Ib(xo)l < for ¢ Z. However, using (2) we get 

(4) [f,~(Tl(x))[ -- [f,~(T(x)) + ~w[ -- If~(T(x))[ + r/_> v(T) - 7}2 + 77. 
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By the choice of r/,(, l < L~..h) v(T)  + 7/A + y2(1 - A) < v(T)  - ~2 + ~, and this 

implies, in view of (a) and (4) 

sup{If~(T,(z))[  : z E F~} + ,12(1 - A) < s u p { l L ( T , ( z ) ) l  : z E F•} 

so the number  in the right side is v(T1 ), by Lcmma 3. 

Up to this point we got an opcra tor  T1 such that  

lIT - T, II -< ,~, liT, II -< tlTlt + ~ < 1 

and there exists a E A satisfying 

(5) v(T, )  = sup ]f•(T(z))] > sup {Ifz(T,(z))[  : z E F~} + ,12(1 - A). 
zEg. ~#a 

Now we will construct  the desired opera tor  S. Choose 0 < 3' < ~2 and we 

apply Theorem 4 taking F ,  as C and find g in the unit  ball of X*,  such that  

(6) fig - TI*(f~)H < 7 3 

and ]gl at tains its supremum on F~. Define 

(7) S(z)  : Tl (z)  -4- [(1 4- 3fl)g(z) - T;(fc~)(z)] Xc, (z e X) .  

Of course, S is a linear and bounded operator  on X.  

First  we prove that  S attains its nmnerical radius. To show this, let us note  

tha t  for/3 E A, ~ # a ,  z E F~, using (5) we get 

(8) I fz(S(z))I  < v(T,)  - 7/2(1 - t )  4- A(3 '3 4- 7 ~) < v(T1) - 3'(1 - A) 4- A(73 + 72), 

while for z E F~ , f~ (S ( z ) )  = (1 4- 72)g(z) and so, using (6) and (5) 

~up IL(s(~))l  > (1 + .y~) sup Ig(z)l 
zE Fc, z E F,~ 

(9) >__ (14- ~2) [sup  IT~(fe.~(z))I -~{3] '> (l 4-"f2) [u(T1)-"~3] • 
L zE F,~ 

By the choice of 7, 3' < ~_h and so 

~(T,) > 0 > ~ + ~ + ;~(1 + ~) - ! ( 1  - A), 
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which is equivalent to 

(1 + 3, ~) (v(T,  ) - 73) > v(T,  ) - "r(1 - :~) + :~(7 3 + 72). 

In view of (8) and (9) the last inequality implies that 

sup{l f~(S(z)) l  : z • Fz, fl #- ~} <_ sup{lf,~(S(z))] : z • ms},  

so using again Lemma 3 the suprenmm on the right is v(S), which is actually a 

maximum, because 

fa (S(z) )  = (1 + 72)g(z) (z • G )  

and lg] attains its supremum on ira, that is, $ attains its numerical radius. 

We also have 

(S  - T ) ( z )  = h(z)xa (z • X) 

where 

h(z) = (1 + 72)g(z) - T~(f~)(z) + qwf~(z), 

so S - T is a rank-one operator and 

IIS - TII = ,hit < .~3 + .~= + ~ < 3~/< ~. 

| 

Now we use the result by Partington [12; Theorem 1] which asserts that every 

Banach space can be equivalently renormed to have property fl and get 

COROLLARY 5: Every Banach space X is isomorphic to a Banach space Y in 

such a way that R ( Y )  = L(Y) .  
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